Table 3. Observed and calculated structure factors for $\gamma-\mathrm{Na}_{2} \mathrm{ZrF}_{6}$


The $\mathrm{Zr}^{4+}$ ion and the $\mathrm{Na}(1)^{+}$ion are surrounded by an irregular array of $7 \mathrm{~F}^{-}$ions. The resulting $\mathrm{Zr}-\mathrm{F}$ polyhedron has nine triangular faces and the $\mathrm{Na}(1)-\mathrm{F}$ polyhedron has
three triangular faces and two trapezium faces. 7 (1948) found similar $\mathrm{Zr}-7 \mathrm{~F}$ polyhedra in the si $\mathrm{Na}_{3} \mathrm{ZrF}_{7}$. The $\mathrm{Zr}-\mathrm{F}$ polyhedron shares edges : $\mathrm{Na}(1)-\mathrm{F}$ polyhedra and a corner with one other. T ion is coordinated by $8 \mathrm{~F}^{-}$at the corners of an trapezohedron. The $\mathrm{Zr}-\mathrm{F}$ polyhedron shares c four of the $\mathrm{Na}(2)-\mathrm{F}$ trapezohedra. There are two polyhedra similar to $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ with centproximately $x=0.25, y=0.04, z=0.75$ and $x=$ $0.50, z=0.90$. These polyhedra are vacant and to contain Na or Zr cations. The final difference density map has no peaks greater than $1.60 \mathrm{e} \AA^{-1}$ tering matter put on the vacant sites does not give which converges with a least-squares refinement cancies perhaps explain why this polymorph is tie with respect to $\Delta-\mathrm{Na}_{2} \mathrm{ZrF}_{6}$ below $460^{\circ} \mathrm{C}$.

## References

Barton, C. J., Grimes, W. R., Insley, H., Moori Thoma, R. E. (1958). J. Phys. Chem. 62, 665.
Brown, G. M. \& Levy, H. A. (1964). J. Phys. 25
Busing, W. R., Martin, K. O. \& Levy, H. A USAEC Report ORNL-TM-305, Oak Ridge Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Waber, J. T. (1965). Acta Crys:
Dauben, C. H. \& Templeton, D. H. (1955). Ac 8, 841 .
Zachariasen, W. H. (1948). Acta Cryst. 1, 265.
Zacharlasen, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1969). B25, 2166
Indexing of the $\psi$-sulfur fiber pattern. By S. Geller and M. D. Lind, Science Center, North American : Corporation, Thousand Oaks, California, U.S.A.

## (Received 3 February 1969)

The fiber pattern of $\psi$-sulfur reported by Tuinstra and the rotation photograph of the pressure-induced fibrous modification of sulfur (II) about the fiber axis (a) are essentially the same and have been indexed completely on the pseudo-orthorhombic $C$-face-centered cell with $a=13 \cdot 8, b=32 \cdot 4$ and $c=9 \cdot 25 \AA$.

We have recently completed a study of the structure of the pressure-induced fibrous form of sulfur (Lind \& Geller, 1969). There is strong evidence that this form of sulfur is the same as the $\psi$-sulfur reported by Prins, Schenk \& Wachters (1957; see also Prins \& Tuinstra, 1963). Especially important is the exact match of the rotation photograph about the fiber (a) axis of a crystal of the pressure-induced phase and that of a fiber pattern of the $\psi$-sulfur.* Inasmuch as the literature (Tuinstra, 1966, 1967) contains questionable conclusions regarding the indexing of this pattern, it seemed worthwhile to give the results which follow.
It has already been reported (Geller, 1966) that the single-crystal-type diffraction data from the pressure-induced phase indicated that the crystals are $C$-centered orthorhombic with lattice constants $a=13 \cdot 8, b=32 \cdot 4$ and $c=$ $9 \cdot 25 \AA$. The structure determination (Lind \& Geller, 1969) has led to the conclusion that the crystal symmetry is more likely $P 2$ and that the apparent orthorhombic symmetry results from a fine-grained twinning. The true monoclinic cell then has the lattice constants $a=17 \cdot 6, b=9 \cdot 25, c=$

* The best $\psi$-sulfur photograph we have seen has been made by J.Donohue and S.H. Goodman. This is the one that superposes exactly on our (pseudo-orthorhombic) $a$-axis rotation photograph.
$13.8 \AA, \beta=113^{\circ}$. The orthorhombic indices liste: powder pattern (Geller, 1966) may be transform monoclinic indices by application of the two $\frac{T}{2} \frac{1}{2} 0|001| 100$ and $\frac{1}{2} \frac{1}{2} 0|001| \overline{\mathrm{T}} 00$ to each reflection.

We show the indexing of the rotation pho: Table 1. Listed in the first column are Tuinstr: observed values, $Q_{0}\left(Q=10^{4} / d^{2}\right)$, measured on photographs of the stretched, $\mathrm{CS}_{2}$-extracted. fibrous sulfur. In the second column, we give . of $Q_{0,}$ measured on a rotation photograph (2 hr 57.3 mm dia. camera, $\mathrm{Cu} K \alpha$ radiation, Ni filte of the same crystal used to obtain the data in by Lind \& Geller (1969). (The photograph to wi stra (1967) refers is exactly the same except F exposure time.) We do not list the qualitative as we said earlier, the photographs of stret extracted, annealed fibrous sulfur and pressu: fibrous sulfur superimpose exactly and quantitat. given in the Lind \& Geller (1969) paper. We sco two sets of $Q_{o}$ agree quite well although ours ar: ably better resolved. Our $Q_{c}$ and indices basc-pseudo-orthorhombic lattice constants are gin third and fourth columns, respectively. It is see: agreement in $Q$ 's is excellent, so that even thoug sible that the fiber axis is very long, as Tuinstra
apezium faces. $Z$ yhedra in the str $n$ shares edges $n$. with one other. The: he corners of an hedron shares ed ra. There are $\mathrm{tw}_{0}$ $\mathrm{Na}(2)$ with center $z=0.75$ and $x=0$ are vacant and : he final difference or than $1.60 \mathrm{e} . \AA^{-1}$, sites does not give quares refinement. is polymorph is me w $460^{\circ} \mathrm{C}$.

## ces

nsley, H., Moort. $\ddagger$ . Chem. 62, 665. (1964). J. Phys. 25. 0. \& Levy, H. A -305, Oak Ridge nessee.
(1965). Acta Cryst
D. H. (1955). Aci
cta Cryst. 1, 265.
sta Cryst. 23, 558.

Nouth Amazica: :
te pressure-induced have been indexed $c=9 \cdot 25 \AA$.
ombic indices listod may be transform: ation of the two , each reflection. the rotation phot blumn are Tuinstra $d^{2}$ ), measured on d, $\mathrm{CS}_{2}$-extracted, column, we give : photograph (2 hr : radiation, Ni filter ,btain the data in : photograph to w he same except $p$ st the qualitative in :ographs of stretct sulfur and pressurs ctly and quantitat 969) paper. We sto 1 although ours are $c$ and indices base constants are giv spectively. It is sce. so that even thous long, as Tuinstra

Table 1. Indexing of rotation photograph of $\psi$-sulphur

| Tuinstra | Present Work |  |  | Tuinctrs | Present Work |  |  | Tuinstra | Present Work |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q | $Q{ }_{0}$ | Q | $\underline{\mathrm{h}} \mathrm{k}$ ㄴ | Q | Q | $Q_{\mathrm{c}}$ | $\underline{\mathrm{h}} \mathrm{K}$ 2 | Q | Q | Q |  |
| 473 | 478 | 467 | 002 | * | 2625 | 2634 | 2,12,3 |  | 3774 | 3759 | 4,14,3 |
| 613 |  | 610 | 080 | * | 3253 | 3284 | 245 | 3792 | 3826 | 3800 | 425 |
| 613 | 613 | 620 | 042 | . | 3713 | 3701 | 2,16,3 | 4093 | 4036 | 4043 | 4,18,1 |
| 1842 | 1847 | 1839 | 0,12,2 |  | 3713 | 3742 | 285 | 4093 | 4110 | 4105 | 465 |
| 1842 | 1847 | 1870 | 004 | * | 4092 | 4137 | 2,20,1 | 4751 | 4719 | 4715 | 4,10,5 |
| 2050 | 2046 | 2022 | 044 | * | 4451 | 4501 | 2,12,5 | $\cdots$ | 5639 | 5629 | 4,14,5 |
| 2431 | 2422 | 2439 | 0,16,0 | * | 5582 | 5570 | 2,16,5 | * | 6472 | 6503 | 4,22,3 |
| 2470 | 2475 | 2480 | 084 | * | 5839 | 5814 | 2,24,1 | * | 6957 | 6910 | 467 |
| 2868 | 2894 | 2906 | 0,16,2 | * | 6099 | 6089 | 247 |  |  |  |  |
| 3244 | 3234 | 3242 | 0,12,4 | * | 6610 | 6547 | 287 | 2250 | 2230 | 2233 | 660 |
| 4265 |  | 4208 | 006 |  |  |  |  | 2379 | 2372 | 2396 | 622 |
| 4265 | 4271 | 4278 | 0,20,2 | 946 | 950 | 939 | 370 | 2707 | 2706 | 2701 | 662 |
| 4316 | 4345 | 4309 | 0,16,4 | 946 | 950 | 950 | 312 | 2800 | 2823 | 2843 | 6,10,0 |
| 4316 | 4345 | 4360 | 046 | * | 1032 | 1026 | 332 | 3284 | 3300 | 3311 | 6,10,2 |
| 4845 | 4843 | 4817 | 086 | 1165 | 1160 | 1178 | 352 | 3797 | 3807 | 3798 | 624 |
| 5449 | 5455 | 5487 | 0,24,0 | 1222 | 1224 | 1244 | 390 | 4172 | 4089 | 4103 | 664 |
| 5618 | 5619 | 5579 | 0,12,6 | 1414 | 1414 | 1407 | 372 | 4172 | 4202 | 4225 | 6,14,2 |
|  | 561 | 5680 | 0,20,4 | 1691 | 1706 | 1712 | 392 | - | 4762 | 4712 | 6,10,4 |
| * | 6631 | 6645 | 0,16,6 | 2104 | 2107 | 2093 | 3,11,2 | * | 4923 | 4977 | 6,18,0 |
|  |  |  |  |  | 2377 | 2352 | 314 | * | 5484 | 5444 | 6,18,2 |
| 962 | 967 | 941 | 191 |  | 2431 | 2428 | 334 | * | 5640 | 5628 | 6,14,4 |
| 1146 | 1133 | 1113 | 113 | 2500 | 2532 | 2550 | 3,13,2 | * | 6171 | 6136 | 626 |
| 1300 | 1318 | 1322 | 1,11,1 |  | 2578 | 2581 | 354 | * | 6521 | 6501 | 6,22,0 |
| 1361 | 1380 | 1342 | 153 |  | 2576 | 2616 | 3,15,0 | * | 6952 | 6968 | 6,22,2 |
| 1933 | 1934 | 1876 | 193 | 3110 | 3099 | 3083 | 3,15,2 | * | 7070 | 7050 | 6,10,6 |
| 2250 | 2251 | 2257 | 1,11,3 | 3110 | 3099 | 3114 | 394 |  |  |  |  |
| 2978 | 2948 | 2922 | 1,17,1 | * | 3171 | 3226 | 3,17,0 | 2732 | ** | 2 L 699 | 711 |
| 3113 | 3086 | 3060 | 135 | 3517 | 3489 | 3495 | 3,21,4 | 2808 | ** | 2776 | 731 |
|  |  | 3212 | 155 | * | 5547 | 5512 | 3,23,0 | 2950 | ** | 2928 | 751 |
| 3255 | 3233 | 3248 | 1,15,3 | * | 6295 | 6290 | 3,13,6 | 3470 | ** | 3461 | 791 |
| 3470 | 3454 | 3441 | 175 | . | 7916 | 7885 | 3,27,2 | 3712 | ** | 3710 | 733 |
| 3560 | 3548 | 3608 | 1,19,1 | , | 7916 | 7962 | 318 | 3867 | ** | 3843 | 7,11,1 |
| 3790 | 3750 | 3746 | 195 | * | 8263 | 8296 | 3,25,4 | 3867 | ${ }^{*}$ | 3863 | 753 |
| 3860 | 3875 | 3857 | 1,17,3 | * | 8856 | 8881 | 3,21,6 | 4136 | ** | 4092 | 773 |
| 5130 | 5135 | 5118 | 1,15,5 | * | 9270 | 9287 | 3,27,4 | 4337 | ** | 4397 | 793 |
| 5900 | 5858 | 5789 5865 | 117 | 1318 | 1316 |  | 461 | 5414 | ** | 5406 |  |
|  |  | 6123 | 1,25,1 |  |  | 1910 | 4,10,1 | 5550 | ** | 5520 | 10,4,1 |
| 6200 | 6096 | 6144 | 1,23,3 | 1942 | 1936 | 1930 | 423 | 6017 | ** | 5978 | 10,8,1 |
|  | 6321 | 6246 | 177 | 2250 | 2253 | 2235 | 463 |  |  |  |  |
| - | 7005 | 6932 | 1,11,7 | 2866 |  | 2824 | 4,14,1 |  |  |  |  |
|  | 7005 | 7058 | 1,25,3 |  |  | 2844 | 4,10,3 |  |  |  |  |

Ar even that there is not crystallographic order in action in the usual sense, there is little doubt that ay nearly a multiple of $13.8 \AA$. Further, there is no a entering into a discussion of the elements of crystalthy regarding the long pseudo-orthorhombic $b$ axis 4a, 1967). The crystal diffraction data, some of which swn in Geller (1966), and indeed the results shown a 1 , should suffice.
utra (1966) says that 'only in the direction of the * (our $c^{*}$ ) is an ordinary indexing possible', a con-- which is negated by the results shown in Table 1. roach is an arbitrary one; certainly with respect to $T$ the directions perpendicular to the helix axes, he aded arbitrarily on the disorder. Tuinstra (1966) that the periods along the fiber axis are not indicative $\square$ along this direction, that, for example, the ratio cights of the layers ' 3 ' and ' 1 ' is $2 \cdot 85$. The evidence Tis not convincing: First, note the good agreement $Q$ 's with the $Q_{0}$ 's. Second, measurements made to the rotation axis of rotation photographs cannot wdered to give very reliable spacings. Third, and mportant, measurements on our photograph from to layer line, and the identity period calculated em are:

| Layer <br> :umber | Distance <br> $(\mathrm{mm})$ | Identity period <br> $(\AA)$ |
| :---: | :---: | :---: |
| 1 | 3.25 | 13.69 |
| 2 | 6.58 | 13.78 |
| 3 | 10.20 | 13.79 |
| 4 | 14.47 | 13.67 |
| 5 | not observed |  |
| 6 | 25.75 | 13.84 |

${ }^{\text {trage value is }} 13 \cdot 75 \AA$, but it is not better than $13 \cdot 8 \AA$.

We emphasize, nevertheless, that we accent the possibility of either a very long axis or lack of order in the fiber axis direction. The nature of the reflections themselves indicates this; some appear sharper than others, and we are not sure that those that are supposed to be in the same layer are all precisely aligned. (However, the crystals are not like those with which most crystallographers usually deal.)
It is difficult to see how Tuinstra did 'index' (his quotes) his data. On page 344 of his paper (1966), he indicates a rectangular prismatic cell, then discusses a $\beta$ angle of $170^{\circ}$, then that $\beta$ is undetermined, then speaks of taking as origin for the $h$ index in each reciprocal lattice layer, the 'point nearest to the origin in reciprocal space'. When we look at his Table 2, we find positive and negative $h$ indices; when his $h=3$ for example, he does seem to take a $\beta$ angle of $170^{\circ}$ between his $a$ and $c$ axes of 8.11 and $13.8 \AA$ length, respectively. This means that the third layer belongs to a cell with $a=8 \cdot 11, b=9 \cdot 20, c=13 \cdot 8 \AA, \beta=170^{\circ}$. Other layers are indexed differently; thus, we must wonder how the intensities were calculated.

## References

Geller, S. (1966). Science, 152, 644.
Lind, M. D. \& Geller, S. (1969). J. Chem. Phys. In the press.
Prins, J. A., Schenk, J. \& Wachters, L. H. J. (1957). Physica, 23, 746.
Prins, J. A. \& Tuinstra, F. (1963). Physica, 29, 328, 884.

Tuinstra, F. (1966). Acta Cryst. 20, 341.
Tuinstra, F. (1967). Physica, 34, 113.

